3.5.73 \(\int \frac {x^{5/2}}{(a+b x^2) (c+d x^2)^2} \, dx\) [473]

3.5.73.1 Optimal result
3.5.73.2 Mathematica [A] (verified)
3.5.73.3 Rubi [A] (verified)
3.5.73.4 Maple [A] (verified)
3.5.73.5 Fricas [C] (verification not implemented)
3.5.73.6 Sympy [F(-1)]
3.5.73.7 Maxima [A] (verification not implemented)
3.5.73.8 Giac [A] (verification not implemented)
3.5.73.9 Mupad [B] (verification not implemented)

3.5.73.1 Optimal result

Integrand size = 24, antiderivative size = 528 \[ \int \frac {x^{5/2}}{\left (a+b x^2\right ) \left (c+d x^2\right )^2} \, dx=\frac {x^{3/2}}{2 (b c-a d) \left (c+d x^2\right )}+\frac {a^{3/4} \sqrt [4]{b} \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} (b c-a d)^2}-\frac {a^{3/4} \sqrt [4]{b} \arctan \left (1+\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} (b c-a d)^2}-\frac {(b c+3 a d) \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{d} \sqrt {x}}{\sqrt [4]{c}}\right )}{4 \sqrt {2} \sqrt [4]{c} d^{3/4} (b c-a d)^2}+\frac {(b c+3 a d) \arctan \left (1+\frac {\sqrt {2} \sqrt [4]{d} \sqrt {x}}{\sqrt [4]{c}}\right )}{4 \sqrt {2} \sqrt [4]{c} d^{3/4} (b c-a d)^2}-\frac {a^{3/4} \sqrt [4]{b} \log \left (\sqrt {a}-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {b} x\right )}{2 \sqrt {2} (b c-a d)^2}+\frac {a^{3/4} \sqrt [4]{b} \log \left (\sqrt {a}+\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {b} x\right )}{2 \sqrt {2} (b c-a d)^2}+\frac {(b c+3 a d) \log \left (\sqrt {c}-\sqrt {2} \sqrt [4]{c} \sqrt [4]{d} \sqrt {x}+\sqrt {d} x\right )}{8 \sqrt {2} \sqrt [4]{c} d^{3/4} (b c-a d)^2}-\frac {(b c+3 a d) \log \left (\sqrt {c}+\sqrt {2} \sqrt [4]{c} \sqrt [4]{d} \sqrt {x}+\sqrt {d} x\right )}{8 \sqrt {2} \sqrt [4]{c} d^{3/4} (b c-a d)^2} \]

output
1/2*x^(3/2)/(-a*d+b*c)/(d*x^2+c)+1/2*a^(3/4)*b^(1/4)*arctan(1-b^(1/4)*2^(1 
/2)*x^(1/2)/a^(1/4))/(-a*d+b*c)^2*2^(1/2)-1/2*a^(3/4)*b^(1/4)*arctan(1+b^( 
1/4)*2^(1/2)*x^(1/2)/a^(1/4))/(-a*d+b*c)^2*2^(1/2)-1/8*(3*a*d+b*c)*arctan( 
1-d^(1/4)*2^(1/2)*x^(1/2)/c^(1/4))/c^(1/4)/d^(3/4)/(-a*d+b*c)^2*2^(1/2)+1/ 
8*(3*a*d+b*c)*arctan(1+d^(1/4)*2^(1/2)*x^(1/2)/c^(1/4))/c^(1/4)/d^(3/4)/(- 
a*d+b*c)^2*2^(1/2)-1/4*a^(3/4)*b^(1/4)*ln(a^(1/2)+x*b^(1/2)-a^(1/4)*b^(1/4 
)*2^(1/2)*x^(1/2))/(-a*d+b*c)^2*2^(1/2)+1/4*a^(3/4)*b^(1/4)*ln(a^(1/2)+x*b 
^(1/2)+a^(1/4)*b^(1/4)*2^(1/2)*x^(1/2))/(-a*d+b*c)^2*2^(1/2)+1/16*(3*a*d+b 
*c)*ln(c^(1/2)+x*d^(1/2)-c^(1/4)*d^(1/4)*2^(1/2)*x^(1/2))/c^(1/4)/d^(3/4)/ 
(-a*d+b*c)^2*2^(1/2)-1/16*(3*a*d+b*c)*ln(c^(1/2)+x*d^(1/2)+c^(1/4)*d^(1/4) 
*2^(1/2)*x^(1/2))/c^(1/4)/d^(3/4)/(-a*d+b*c)^2*2^(1/2)
 
3.5.73.2 Mathematica [A] (verified)

Time = 0.75 (sec) , antiderivative size = 269, normalized size of antiderivative = 0.51 \[ \int \frac {x^{5/2}}{\left (a+b x^2\right ) \left (c+d x^2\right )^2} \, dx=\frac {\frac {4 (b c-a d) x^{3/2}}{c+d x^2}+4 \sqrt {2} a^{3/4} \sqrt [4]{b} \arctan \left (\frac {\sqrt {a}-\sqrt {b} x}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}}\right )-\frac {\sqrt {2} (b c+3 a d) \arctan \left (\frac {\sqrt {c}-\sqrt {d} x}{\sqrt {2} \sqrt [4]{c} \sqrt [4]{d} \sqrt {x}}\right )}{\sqrt [4]{c} d^{3/4}}+4 \sqrt {2} a^{3/4} \sqrt [4]{b} \text {arctanh}\left (\frac {\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}}{\sqrt {a}+\sqrt {b} x}\right )-\frac {\sqrt {2} (b c+3 a d) \text {arctanh}\left (\frac {\sqrt {2} \sqrt [4]{c} \sqrt [4]{d} \sqrt {x}}{\sqrt {c}+\sqrt {d} x}\right )}{\sqrt [4]{c} d^{3/4}}}{8 (b c-a d)^2} \]

input
Integrate[x^(5/2)/((a + b*x^2)*(c + d*x^2)^2),x]
 
output
((4*(b*c - a*d)*x^(3/2))/(c + d*x^2) + 4*Sqrt[2]*a^(3/4)*b^(1/4)*ArcTan[(S 
qrt[a] - Sqrt[b]*x)/(Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x])] - (Sqrt[2]*(b*c + 3 
*a*d)*ArcTan[(Sqrt[c] - Sqrt[d]*x)/(Sqrt[2]*c^(1/4)*d^(1/4)*Sqrt[x])])/(c^ 
(1/4)*d^(3/4)) + 4*Sqrt[2]*a^(3/4)*b^(1/4)*ArcTanh[(Sqrt[2]*a^(1/4)*b^(1/4 
)*Sqrt[x])/(Sqrt[a] + Sqrt[b]*x)] - (Sqrt[2]*(b*c + 3*a*d)*ArcTanh[(Sqrt[2 
]*c^(1/4)*d^(1/4)*Sqrt[x])/(Sqrt[c] + Sqrt[d]*x)])/(c^(1/4)*d^(3/4)))/(8*( 
b*c - a*d)^2)
 
3.5.73.3 Rubi [A] (verified)

Time = 0.69 (sec) , antiderivative size = 540, normalized size of antiderivative = 1.02, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {368, 971, 1054, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^{5/2}}{\left (a+b x^2\right ) \left (c+d x^2\right )^2} \, dx\)

\(\Big \downarrow \) 368

\(\displaystyle 2 \int \frac {x^3}{\left (b x^2+a\right ) \left (d x^2+c\right )^2}d\sqrt {x}\)

\(\Big \downarrow \) 971

\(\displaystyle 2 \left (\frac {x^{3/2}}{4 \left (c+d x^2\right ) (b c-a d)}-\frac {\int \frac {x \left (3 a-b x^2\right )}{\left (b x^2+a\right ) \left (d x^2+c\right )}d\sqrt {x}}{4 (b c-a d)}\right )\)

\(\Big \downarrow \) 1054

\(\displaystyle 2 \left (\frac {x^{3/2}}{4 \left (c+d x^2\right ) (b c-a d)}-\frac {\int \left (\frac {4 a b x}{(b c-a d) \left (b x^2+a\right )}-\frac {(b c+3 a d) x}{(b c-a d) \left (d x^2+c\right )}\right )d\sqrt {x}}{4 (b c-a d)}\right )\)

\(\Big \downarrow \) 2009

\(\displaystyle 2 \left (\frac {x^{3/2}}{4 \left (c+d x^2\right ) (b c-a d)}-\frac {-\frac {\sqrt {2} a^{3/4} \sqrt [4]{b} \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{b c-a d}+\frac {\sqrt {2} a^{3/4} \sqrt [4]{b} \arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}+1\right )}{b c-a d}+\frac {a^{3/4} \sqrt [4]{b} \log \left (-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {a}+\sqrt {b} x\right )}{\sqrt {2} (b c-a d)}-\frac {a^{3/4} \sqrt [4]{b} \log \left (\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {a}+\sqrt {b} x\right )}{\sqrt {2} (b c-a d)}+\frac {(3 a d+b c) \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{d} \sqrt {x}}{\sqrt [4]{c}}\right )}{2 \sqrt {2} \sqrt [4]{c} d^{3/4} (b c-a d)}-\frac {(3 a d+b c) \arctan \left (\frac {\sqrt {2} \sqrt [4]{d} \sqrt {x}}{\sqrt [4]{c}}+1\right )}{2 \sqrt {2} \sqrt [4]{c} d^{3/4} (b c-a d)}-\frac {(3 a d+b c) \log \left (-\sqrt {2} \sqrt [4]{c} \sqrt [4]{d} \sqrt {x}+\sqrt {c}+\sqrt {d} x\right )}{4 \sqrt {2} \sqrt [4]{c} d^{3/4} (b c-a d)}+\frac {(3 a d+b c) \log \left (\sqrt {2} \sqrt [4]{c} \sqrt [4]{d} \sqrt {x}+\sqrt {c}+\sqrt {d} x\right )}{4 \sqrt {2} \sqrt [4]{c} d^{3/4} (b c-a d)}}{4 (b c-a d)}\right )\)

input
Int[x^(5/2)/((a + b*x^2)*(c + d*x^2)^2),x]
 
output
2*(x^(3/2)/(4*(b*c - a*d)*(c + d*x^2)) - (-((Sqrt[2]*a^(3/4)*b^(1/4)*ArcTa 
n[1 - (Sqrt[2]*b^(1/4)*Sqrt[x])/a^(1/4)])/(b*c - a*d)) + (Sqrt[2]*a^(3/4)* 
b^(1/4)*ArcTan[1 + (Sqrt[2]*b^(1/4)*Sqrt[x])/a^(1/4)])/(b*c - a*d) + ((b*c 
 + 3*a*d)*ArcTan[1 - (Sqrt[2]*d^(1/4)*Sqrt[x])/c^(1/4)])/(2*Sqrt[2]*c^(1/4 
)*d^(3/4)*(b*c - a*d)) - ((b*c + 3*a*d)*ArcTan[1 + (Sqrt[2]*d^(1/4)*Sqrt[x 
])/c^(1/4)])/(2*Sqrt[2]*c^(1/4)*d^(3/4)*(b*c - a*d)) + (a^(3/4)*b^(1/4)*Lo 
g[Sqrt[a] - Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x] + Sqrt[b]*x])/(Sqrt[2]*(b*c - 
a*d)) - (a^(3/4)*b^(1/4)*Log[Sqrt[a] + Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x] + S 
qrt[b]*x])/(Sqrt[2]*(b*c - a*d)) - ((b*c + 3*a*d)*Log[Sqrt[c] - Sqrt[2]*c^ 
(1/4)*d^(1/4)*Sqrt[x] + Sqrt[d]*x])/(4*Sqrt[2]*c^(1/4)*d^(3/4)*(b*c - a*d) 
) + ((b*c + 3*a*d)*Log[Sqrt[c] + Sqrt[2]*c^(1/4)*d^(1/4)*Sqrt[x] + Sqrt[d] 
*x])/(4*Sqrt[2]*c^(1/4)*d^(3/4)*(b*c - a*d)))/(4*(b*c - a*d)))
 

3.5.73.3.1 Defintions of rubi rules used

rule 368
Int[((e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_) 
, x_Symbol] :> With[{k = Denominator[m]}, Simp[k/e   Subst[Int[x^(k*(m + 1) 
 - 1)*(a + b*(x^(k*2)/e^2))^p*(c + d*(x^(k*2)/e^2))^q, x], x, (e*x)^(1/k)], 
 x]] /; FreeQ[{a, b, c, d, e, p, q}, x] && NeQ[b*c - a*d, 0] && FractionQ[m 
] && IntegerQ[p]
 

rule 971
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_ 
))^(q_), x_Symbol] :> Simp[e^(n - 1)*(e*x)^(m - n + 1)*(a + b*x^n)^(p + 1)* 
((c + d*x^n)^(q + 1)/(n*(b*c - a*d)*(p + 1))), x] - Simp[e^n/(n*(b*c - a*d) 
*(p + 1))   Int[(e*x)^(m - n)*(a + b*x^n)^(p + 1)*(c + d*x^n)^q*Simp[c*(m - 
 n + 1) + d*(m + n*(p + q + 1) + 1)*x^n, x], x], x] /; FreeQ[{a, b, c, d, e 
, q}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LtQ[p, -1] && GeQ[n, m - n + 
 1] && GtQ[m - n + 1, 0] && IntBinomialQ[a, b, c, d, e, m, n, p, q, x]
 

rule 1054
Int[(((g_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((e_) + (f_.)*(x_)^(n 
_)))/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Int[ExpandIntegrand[(g*x)^m*(a 
+ b*x^n)^p*((e + f*x^n)/(c + d*x^n)), x], x] /; FreeQ[{a, b, c, d, e, f, g, 
 m, p}, x] && IGtQ[n, 0]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 
3.5.73.4 Maple [A] (verified)

Time = 3.13 (sec) , antiderivative size = 264, normalized size of antiderivative = 0.50

method result size
derivativedivides \(\frac {\frac {2 \left (-\frac {a d}{4}+\frac {b c}{4}\right ) x^{\frac {3}{2}}}{d \,x^{2}+c}+\frac {\left (\frac {3 a d}{4}+\frac {b c}{4}\right ) \sqrt {2}\, \left (\ln \left (\frac {x -\left (\frac {c}{d}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {c}{d}}}{x +\left (\frac {c}{d}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {c}{d}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {c}{d}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {c}{d}\right )^{\frac {1}{4}}}-1\right )\right )}{4 d \left (\frac {c}{d}\right )^{\frac {1}{4}}}}{\left (a d -b c \right )^{2}}-\frac {a \sqrt {2}\, \left (\ln \left (\frac {x -\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {a}{b}}}{x +\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {a}{b}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}-1\right )\right )}{4 \left (a d -b c \right )^{2} \left (\frac {a}{b}\right )^{\frac {1}{4}}}\) \(264\)
default \(\frac {\frac {2 \left (-\frac {a d}{4}+\frac {b c}{4}\right ) x^{\frac {3}{2}}}{d \,x^{2}+c}+\frac {\left (\frac {3 a d}{4}+\frac {b c}{4}\right ) \sqrt {2}\, \left (\ln \left (\frac {x -\left (\frac {c}{d}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {c}{d}}}{x +\left (\frac {c}{d}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {c}{d}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {c}{d}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {c}{d}\right )^{\frac {1}{4}}}-1\right )\right )}{4 d \left (\frac {c}{d}\right )^{\frac {1}{4}}}}{\left (a d -b c \right )^{2}}-\frac {a \sqrt {2}\, \left (\ln \left (\frac {x -\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {a}{b}}}{x +\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {a}{b}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}-1\right )\right )}{4 \left (a d -b c \right )^{2} \left (\frac {a}{b}\right )^{\frac {1}{4}}}\) \(264\)

input
int(x^(5/2)/(b*x^2+a)/(d*x^2+c)^2,x,method=_RETURNVERBOSE)
 
output
2/(a*d-b*c)^2*((-1/4*a*d+1/4*b*c)*x^(3/2)/(d*x^2+c)+1/8*(3/4*a*d+1/4*b*c)/ 
d/(c/d)^(1/4)*2^(1/2)*(ln((x-(c/d)^(1/4)*x^(1/2)*2^(1/2)+(c/d)^(1/2))/(x+( 
c/d)^(1/4)*x^(1/2)*2^(1/2)+(c/d)^(1/2)))+2*arctan(2^(1/2)/(c/d)^(1/4)*x^(1 
/2)+1)+2*arctan(2^(1/2)/(c/d)^(1/4)*x^(1/2)-1)))-1/4*a/(a*d-b*c)^2/(a/b)^( 
1/4)*2^(1/2)*(ln((x-(a/b)^(1/4)*x^(1/2)*2^(1/2)+(a/b)^(1/2))/(x+(a/b)^(1/4 
)*x^(1/2)*2^(1/2)+(a/b)^(1/2)))+2*arctan(2^(1/2)/(a/b)^(1/4)*x^(1/2)+1)+2* 
arctan(2^(1/2)/(a/b)^(1/4)*x^(1/2)-1))
 
3.5.73.5 Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 1.85 (sec) , antiderivative size = 3417, normalized size of antiderivative = 6.47 \[ \int \frac {x^{5/2}}{\left (a+b x^2\right ) \left (c+d x^2\right )^2} \, dx=\text {Too large to display} \]

input
integrate(x^(5/2)/(b*x^2+a)/(d*x^2+c)^2,x, algorithm="fricas")
 
output
-1/8*(4*(-a^3*b/(b^8*c^8 - 8*a*b^7*c^7*d + 28*a^2*b^6*c^6*d^2 - 56*a^3*b^5 
*c^5*d^3 + 70*a^4*b^4*c^4*d^4 - 56*a^5*b^3*c^3*d^5 + 28*a^6*b^2*c^2*d^6 - 
8*a^7*b*c*d^7 + a^8*d^8))^(1/4)*(b*c^2 - a*c*d + (b*c*d - a*d^2)*x^2)*log( 
a^2*b*sqrt(x) + (b^6*c^6 - 6*a*b^5*c^5*d + 15*a^2*b^4*c^4*d^2 - 20*a^3*b^3 
*c^3*d^3 + 15*a^4*b^2*c^2*d^4 - 6*a^5*b*c*d^5 + a^6*d^6)*(-a^3*b/(b^8*c^8 
- 8*a*b^7*c^7*d + 28*a^2*b^6*c^6*d^2 - 56*a^3*b^5*c^5*d^3 + 70*a^4*b^4*c^4 
*d^4 - 56*a^5*b^3*c^3*d^5 + 28*a^6*b^2*c^2*d^6 - 8*a^7*b*c*d^7 + a^8*d^8)) 
^(3/4)) - 4*(-a^3*b/(b^8*c^8 - 8*a*b^7*c^7*d + 28*a^2*b^6*c^6*d^2 - 56*a^3 
*b^5*c^5*d^3 + 70*a^4*b^4*c^4*d^4 - 56*a^5*b^3*c^3*d^5 + 28*a^6*b^2*c^2*d^ 
6 - 8*a^7*b*c*d^7 + a^8*d^8))^(1/4)*(b*c^2 - a*c*d + (b*c*d - a*d^2)*x^2)* 
log(a^2*b*sqrt(x) - (b^6*c^6 - 6*a*b^5*c^5*d + 15*a^2*b^4*c^4*d^2 - 20*a^3 
*b^3*c^3*d^3 + 15*a^4*b^2*c^2*d^4 - 6*a^5*b*c*d^5 + a^6*d^6)*(-a^3*b/(b^8* 
c^8 - 8*a*b^7*c^7*d + 28*a^2*b^6*c^6*d^2 - 56*a^3*b^5*c^5*d^3 + 70*a^4*b^4 
*c^4*d^4 - 56*a^5*b^3*c^3*d^5 + 28*a^6*b^2*c^2*d^6 - 8*a^7*b*c*d^7 + a^8*d 
^8))^(3/4)) - 4*(-a^3*b/(b^8*c^8 - 8*a*b^7*c^7*d + 28*a^2*b^6*c^6*d^2 - 56 
*a^3*b^5*c^5*d^3 + 70*a^4*b^4*c^4*d^4 - 56*a^5*b^3*c^3*d^5 + 28*a^6*b^2*c^ 
2*d^6 - 8*a^7*b*c*d^7 + a^8*d^8))^(1/4)*(-I*b*c^2 + I*a*c*d - I*(b*c*d - a 
*d^2)*x^2)*log(a^2*b*sqrt(x) - (I*b^6*c^6 - 6*I*a*b^5*c^5*d + 15*I*a^2*b^4 
*c^4*d^2 - 20*I*a^3*b^3*c^3*d^3 + 15*I*a^4*b^2*c^2*d^4 - 6*I*a^5*b*c*d^5 + 
 I*a^6*d^6)*(-a^3*b/(b^8*c^8 - 8*a*b^7*c^7*d + 28*a^2*b^6*c^6*d^2 - 56*...
 
3.5.73.6 Sympy [F(-1)]

Timed out. \[ \int \frac {x^{5/2}}{\left (a+b x^2\right ) \left (c+d x^2\right )^2} \, dx=\text {Timed out} \]

input
integrate(x**(5/2)/(b*x**2+a)/(d*x**2+c)**2,x)
 
output
Timed out
 
3.5.73.7 Maxima [A] (verification not implemented)

Time = 0.30 (sec) , antiderivative size = 436, normalized size of antiderivative = 0.83 \[ \int \frac {x^{5/2}}{\left (a+b x^2\right ) \left (c+d x^2\right )^2} \, dx=-\frac {a b {\left (\frac {2 \, \sqrt {2} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} + 2 \, \sqrt {b} \sqrt {x}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {b}}}\right )}{\sqrt {\sqrt {a} \sqrt {b}} \sqrt {b}} + \frac {2 \, \sqrt {2} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} - 2 \, \sqrt {b} \sqrt {x}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {b}}}\right )}{\sqrt {\sqrt {a} \sqrt {b}} \sqrt {b}} - \frac {\sqrt {2} \log \left (\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} \sqrt {x} + \sqrt {b} x + \sqrt {a}\right )}{a^{\frac {1}{4}} b^{\frac {3}{4}}} + \frac {\sqrt {2} \log \left (-\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} \sqrt {x} + \sqrt {b} x + \sqrt {a}\right )}{a^{\frac {1}{4}} b^{\frac {3}{4}}}\right )}}{4 \, {\left (b^{2} c^{2} - 2 \, a b c d + a^{2} d^{2}\right )}} + \frac {{\left (b c + 3 \, a d\right )} {\left (\frac {2 \, \sqrt {2} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} c^{\frac {1}{4}} d^{\frac {1}{4}} + 2 \, \sqrt {d} \sqrt {x}\right )}}{2 \, \sqrt {\sqrt {c} \sqrt {d}}}\right )}{\sqrt {\sqrt {c} \sqrt {d}} \sqrt {d}} + \frac {2 \, \sqrt {2} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} c^{\frac {1}{4}} d^{\frac {1}{4}} - 2 \, \sqrt {d} \sqrt {x}\right )}}{2 \, \sqrt {\sqrt {c} \sqrt {d}}}\right )}{\sqrt {\sqrt {c} \sqrt {d}} \sqrt {d}} - \frac {\sqrt {2} \log \left (\sqrt {2} c^{\frac {1}{4}} d^{\frac {1}{4}} \sqrt {x} + \sqrt {d} x + \sqrt {c}\right )}{c^{\frac {1}{4}} d^{\frac {3}{4}}} + \frac {\sqrt {2} \log \left (-\sqrt {2} c^{\frac {1}{4}} d^{\frac {1}{4}} \sqrt {x} + \sqrt {d} x + \sqrt {c}\right )}{c^{\frac {1}{4}} d^{\frac {3}{4}}}\right )}}{16 \, {\left (b^{2} c^{2} - 2 \, a b c d + a^{2} d^{2}\right )}} + \frac {x^{\frac {3}{2}}}{2 \, {\left (b c^{2} - a c d + {\left (b c d - a d^{2}\right )} x^{2}\right )}} \]

input
integrate(x^(5/2)/(b*x^2+a)/(d*x^2+c)^2,x, algorithm="maxima")
 
output
-1/4*a*b*(2*sqrt(2)*arctan(1/2*sqrt(2)*(sqrt(2)*a^(1/4)*b^(1/4) + 2*sqrt(b 
)*sqrt(x))/sqrt(sqrt(a)*sqrt(b)))/(sqrt(sqrt(a)*sqrt(b))*sqrt(b)) + 2*sqrt 
(2)*arctan(-1/2*sqrt(2)*(sqrt(2)*a^(1/4)*b^(1/4) - 2*sqrt(b)*sqrt(x))/sqrt 
(sqrt(a)*sqrt(b)))/(sqrt(sqrt(a)*sqrt(b))*sqrt(b)) - sqrt(2)*log(sqrt(2)*a 
^(1/4)*b^(1/4)*sqrt(x) + sqrt(b)*x + sqrt(a))/(a^(1/4)*b^(3/4)) + sqrt(2)* 
log(-sqrt(2)*a^(1/4)*b^(1/4)*sqrt(x) + sqrt(b)*x + sqrt(a))/(a^(1/4)*b^(3/ 
4)))/(b^2*c^2 - 2*a*b*c*d + a^2*d^2) + 1/16*(b*c + 3*a*d)*(2*sqrt(2)*arcta 
n(1/2*sqrt(2)*(sqrt(2)*c^(1/4)*d^(1/4) + 2*sqrt(d)*sqrt(x))/sqrt(sqrt(c)*s 
qrt(d)))/(sqrt(sqrt(c)*sqrt(d))*sqrt(d)) + 2*sqrt(2)*arctan(-1/2*sqrt(2)*( 
sqrt(2)*c^(1/4)*d^(1/4) - 2*sqrt(d)*sqrt(x))/sqrt(sqrt(c)*sqrt(d)))/(sqrt( 
sqrt(c)*sqrt(d))*sqrt(d)) - sqrt(2)*log(sqrt(2)*c^(1/4)*d^(1/4)*sqrt(x) + 
sqrt(d)*x + sqrt(c))/(c^(1/4)*d^(3/4)) + sqrt(2)*log(-sqrt(2)*c^(1/4)*d^(1 
/4)*sqrt(x) + sqrt(d)*x + sqrt(c))/(c^(1/4)*d^(3/4)))/(b^2*c^2 - 2*a*b*c*d 
 + a^2*d^2) + 1/2*x^(3/2)/(b*c^2 - a*c*d + (b*c*d - a*d^2)*x^2)
 
3.5.73.8 Giac [A] (verification not implemented)

Time = 0.38 (sec) , antiderivative size = 683, normalized size of antiderivative = 1.29 \[ \int \frac {x^{5/2}}{\left (a+b x^2\right ) \left (c+d x^2\right )^2} \, dx=\frac {{\left (\left (c d^{3}\right )^{\frac {3}{4}} b c + 3 \, \left (c d^{3}\right )^{\frac {3}{4}} a d\right )} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {c}{d}\right )^{\frac {1}{4}} + 2 \, \sqrt {x}\right )}}{2 \, \left (\frac {c}{d}\right )^{\frac {1}{4}}}\right )}{4 \, {\left (\sqrt {2} b^{2} c^{3} d^{3} - 2 \, \sqrt {2} a b c^{2} d^{4} + \sqrt {2} a^{2} c d^{5}\right )}} + \frac {{\left (\left (c d^{3}\right )^{\frac {3}{4}} b c + 3 \, \left (c d^{3}\right )^{\frac {3}{4}} a d\right )} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {c}{d}\right )^{\frac {1}{4}} - 2 \, \sqrt {x}\right )}}{2 \, \left (\frac {c}{d}\right )^{\frac {1}{4}}}\right )}{4 \, {\left (\sqrt {2} b^{2} c^{3} d^{3} - 2 \, \sqrt {2} a b c^{2} d^{4} + \sqrt {2} a^{2} c d^{5}\right )}} - \frac {{\left (\left (c d^{3}\right )^{\frac {3}{4}} b c + 3 \, \left (c d^{3}\right )^{\frac {3}{4}} a d\right )} \log \left (\sqrt {2} \sqrt {x} \left (\frac {c}{d}\right )^{\frac {1}{4}} + x + \sqrt {\frac {c}{d}}\right )}{8 \, {\left (\sqrt {2} b^{2} c^{3} d^{3} - 2 \, \sqrt {2} a b c^{2} d^{4} + \sqrt {2} a^{2} c d^{5}\right )}} + \frac {{\left (\left (c d^{3}\right )^{\frac {3}{4}} b c + 3 \, \left (c d^{3}\right )^{\frac {3}{4}} a d\right )} \log \left (-\sqrt {2} \sqrt {x} \left (\frac {c}{d}\right )^{\frac {1}{4}} + x + \sqrt {\frac {c}{d}}\right )}{8 \, {\left (\sqrt {2} b^{2} c^{3} d^{3} - 2 \, \sqrt {2} a b c^{2} d^{4} + \sqrt {2} a^{2} c d^{5}\right )}} - \frac {\left (a b^{3}\right )^{\frac {3}{4}} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {a}{b}\right )^{\frac {1}{4}} + 2 \, \sqrt {x}\right )}}{2 \, \left (\frac {a}{b}\right )^{\frac {1}{4}}}\right )}{\sqrt {2} b^{4} c^{2} - 2 \, \sqrt {2} a b^{3} c d + \sqrt {2} a^{2} b^{2} d^{2}} - \frac {\left (a b^{3}\right )^{\frac {3}{4}} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {a}{b}\right )^{\frac {1}{4}} - 2 \, \sqrt {x}\right )}}{2 \, \left (\frac {a}{b}\right )^{\frac {1}{4}}}\right )}{\sqrt {2} b^{4} c^{2} - 2 \, \sqrt {2} a b^{3} c d + \sqrt {2} a^{2} b^{2} d^{2}} + \frac {\left (a b^{3}\right )^{\frac {3}{4}} \log \left (\sqrt {2} \sqrt {x} \left (\frac {a}{b}\right )^{\frac {1}{4}} + x + \sqrt {\frac {a}{b}}\right )}{2 \, {\left (\sqrt {2} b^{4} c^{2} - 2 \, \sqrt {2} a b^{3} c d + \sqrt {2} a^{2} b^{2} d^{2}\right )}} - \frac {\left (a b^{3}\right )^{\frac {3}{4}} \log \left (-\sqrt {2} \sqrt {x} \left (\frac {a}{b}\right )^{\frac {1}{4}} + x + \sqrt {\frac {a}{b}}\right )}{2 \, {\left (\sqrt {2} b^{4} c^{2} - 2 \, \sqrt {2} a b^{3} c d + \sqrt {2} a^{2} b^{2} d^{2}\right )}} + \frac {x^{\frac {3}{2}}}{2 \, {\left (d x^{2} + c\right )} {\left (b c - a d\right )}} \]

input
integrate(x^(5/2)/(b*x^2+a)/(d*x^2+c)^2,x, algorithm="giac")
 
output
1/4*((c*d^3)^(3/4)*b*c + 3*(c*d^3)^(3/4)*a*d)*arctan(1/2*sqrt(2)*(sqrt(2)* 
(c/d)^(1/4) + 2*sqrt(x))/(c/d)^(1/4))/(sqrt(2)*b^2*c^3*d^3 - 2*sqrt(2)*a*b 
*c^2*d^4 + sqrt(2)*a^2*c*d^5) + 1/4*((c*d^3)^(3/4)*b*c + 3*(c*d^3)^(3/4)*a 
*d)*arctan(-1/2*sqrt(2)*(sqrt(2)*(c/d)^(1/4) - 2*sqrt(x))/(c/d)^(1/4))/(sq 
rt(2)*b^2*c^3*d^3 - 2*sqrt(2)*a*b*c^2*d^4 + sqrt(2)*a^2*c*d^5) - 1/8*((c*d 
^3)^(3/4)*b*c + 3*(c*d^3)^(3/4)*a*d)*log(sqrt(2)*sqrt(x)*(c/d)^(1/4) + x + 
 sqrt(c/d))/(sqrt(2)*b^2*c^3*d^3 - 2*sqrt(2)*a*b*c^2*d^4 + sqrt(2)*a^2*c*d 
^5) + 1/8*((c*d^3)^(3/4)*b*c + 3*(c*d^3)^(3/4)*a*d)*log(-sqrt(2)*sqrt(x)*( 
c/d)^(1/4) + x + sqrt(c/d))/(sqrt(2)*b^2*c^3*d^3 - 2*sqrt(2)*a*b*c^2*d^4 + 
 sqrt(2)*a^2*c*d^5) - (a*b^3)^(3/4)*arctan(1/2*sqrt(2)*(sqrt(2)*(a/b)^(1/4 
) + 2*sqrt(x))/(a/b)^(1/4))/(sqrt(2)*b^4*c^2 - 2*sqrt(2)*a*b^3*c*d + sqrt( 
2)*a^2*b^2*d^2) - (a*b^3)^(3/4)*arctan(-1/2*sqrt(2)*(sqrt(2)*(a/b)^(1/4) - 
 2*sqrt(x))/(a/b)^(1/4))/(sqrt(2)*b^4*c^2 - 2*sqrt(2)*a*b^3*c*d + sqrt(2)* 
a^2*b^2*d^2) + 1/2*(a*b^3)^(3/4)*log(sqrt(2)*sqrt(x)*(a/b)^(1/4) + x + sqr 
t(a/b))/(sqrt(2)*b^4*c^2 - 2*sqrt(2)*a*b^3*c*d + sqrt(2)*a^2*b^2*d^2) - 1/ 
2*(a*b^3)^(3/4)*log(-sqrt(2)*sqrt(x)*(a/b)^(1/4) + x + sqrt(a/b))/(sqrt(2) 
*b^4*c^2 - 2*sqrt(2)*a*b^3*c*d + sqrt(2)*a^2*b^2*d^2) + 1/2*x^(3/2)/((d*x^ 
2 + c)*(b*c - a*d))
 
3.5.73.9 Mupad [B] (verification not implemented)

Time = 7.57 (sec) , antiderivative size = 18673, normalized size of antiderivative = 35.37 \[ \int \frac {x^{5/2}}{\left (a+b x^2\right ) \left (c+d x^2\right )^2} \, dx=\text {Too large to display} \]

input
int(x^(5/2)/((a + b*x^2)*(c + d*x^2)^2),x)
 
output
atan(((((864*a^13*b^4*c*d^13 - 32*a^3*b^14*c^11*d^3 + 1984*a^4*b^13*c^10*d 
^4 - 13856*a^5*b^12*c^9*d^5 + 43264*a^6*b^11*c^8*d^6 - 74816*a^7*b^10*c^7* 
d^7 + 74368*a^8*b^9*c^6*d^8 - 37184*a^9*b^8*c^5*d^9 + 256*a^10*b^7*c^4*d^1 
0 + 10336*a^11*b^6*c^3*d^11 - 5184*a^12*b^5*c^2*d^12)/(a^7*d^7 - b^7*c^7 - 
 21*a^2*b^5*c^5*d^2 + 35*a^3*b^4*c^4*d^3 - 35*a^4*b^3*c^3*d^4 + 21*a^5*b^2 
*c^2*d^5 + 7*a*b^6*c^6*d - 7*a^6*b*c*d^6) + (x^(1/2)*(-(a^3*b)/(16*a^8*d^8 
 + 16*b^8*c^8 + 448*a^2*b^6*c^6*d^2 - 896*a^3*b^5*c^5*d^3 + 1120*a^4*b^4*c 
^4*d^4 - 896*a^5*b^3*c^3*d^5 + 448*a^6*b^2*c^2*d^6 - 128*a*b^7*c^7*d - 128 
*a^7*b*c*d^7))^(1/4)*(2304*a^13*b^4*c*d^14 + 4352*a^3*b^14*c^11*d^4 - 3328 
0*a^4*b^13*c^10*d^5 + 111872*a^5*b^12*c^9*d^6 - 219136*a^6*b^11*c^8*d^7 + 
283136*a^7*b^10*c^7*d^8 - 265216*a^8*b^9*c^6*d^9 + 197120*a^9*b^8*c^5*d^10 
 - 120832*a^10*b^7*c^4*d^11 + 56576*a^11*b^6*c^3*d^12 - 16896*a^12*b^5*c^2 
*d^13))/(a^6*d^6 + b^6*c^6 + 15*a^2*b^4*c^4*d^2 - 20*a^3*b^3*c^3*d^3 + 15* 
a^4*b^2*c^2*d^4 - 6*a*b^5*c^5*d - 6*a^5*b*c*d^5))*(-(a^3*b)/(16*a^8*d^8 + 
16*b^8*c^8 + 448*a^2*b^6*c^6*d^2 - 896*a^3*b^5*c^5*d^3 + 1120*a^4*b^4*c^4* 
d^4 - 896*a^5*b^3*c^3*d^5 + 448*a^6*b^2*c^2*d^6 - 128*a*b^7*c^7*d - 128*a^ 
7*b*c*d^7))^(3/4)*1i + (x^(1/2)*(a^3*b^10*c^6*d + 144*a^8*b^5*c*d^6 + 12*a 
^4*b^9*c^5*d^2 + 54*a^5*b^8*c^4*d^3 + 124*a^6*b^7*c^3*d^4 + 177*a^7*b^6*c^ 
2*d^5)*1i)/(a^6*d^6 + b^6*c^6 + 15*a^2*b^4*c^4*d^2 - 20*a^3*b^3*c^3*d^3 + 
15*a^4*b^2*c^2*d^4 - 6*a*b^5*c^5*d - 6*a^5*b*c*d^5))*(-(a^3*b)/(16*a^8*...